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Exact solution for the inelastic neutron scattering from 
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Received 2 November 1990, in final form 21 February 1991 

Abstract. We consider an anisotropic king model ferromagnet on the honeycomb lattice. 
having nearest-neighbour pairwise interactions 1. 81 > 0 along the oblique and horizontal 
lattice axes, respectively, with 8 > 0 being an anisotropy parameter. Since the Hamiltonian 
contains solely z-component (longitudic31) Pauli spin cperators. the dynamics in the king 
model evolves only for the non-ordering (transverse) spin degrees of freedom. An exact 
solution is calculated for the inelastic neutron scattering function S"(g. w )  = Zn A,,(T, 8) 
6 ( 0  - o , ( O ) ) , n =  3-3,3-2,+1,whichdependsuponthefrequencyw,temperatureTand 
anisotropy 8.  The discrete energy transfers fm,(8) are independent of temperature, vary 
linearly with 8 and possess degeneracies for certain integral values of 8.  The scattering 
amplitudes (intensities/site) A,(T, 8 )  of the Dirac &functions exhibit. for fixed 8 ,  such 
behaviours as rounded maxima, crossing points, and weak energy-type singdadties at the 
critical temperature T,(B). At criticalily, the 'spin wave mode' scattering amplitude versus 
anisotropy displays a shallow asymmetric minimum at 0 = 1. Compared with the existence 
of only four inelastic scattering modes in the isotropic (8 = 1) case, the present six modes 
illustrate the partial lifting of essential degeneracies. Some similar results may be inferred 
for the more general case having two anisotropy parameters and eight modes. 

1. Introduction 

Neutron scattering spectroscopy is a particularly valuable and versatile method-for 
investigating condensed matter [l]. The neutrons thermalized by the moderating light 
or heavy water in a research reactor are abundant in number and well suited in their 
wavelengths to probe various physical properties on an atomic length scale (-1 A). 
Also, since the energies of the incident thermal neutrons in a scattering experiment are 
typically oforder kBTMwhere TMis the moderatortemperature, whenever suchneutrons 
are used to investigate materials for energy levels of this magnitude eV), the 
fractional change in energy for a scattering event will be large and thus easy to measure. 

Two-dimensional (d = 2) magnetic systems [2], especially in alliance with lattice- 
statistical models, have been very important in the studies of phase transitions, critical 
and multicritical phenomena. Interest has intensified in recent years because of the d = 
2 nature of magnetic excitations in high-temperature superconductors. The study of 
excitations is in itself a rich field. In these investigations, exactly soluble models can be 
useful both as guides to the behaviours in more complex systems and because very often 
the model itself is realizable in a physical system. For example. the layered magnetic 
compounds K,CoF4 and Rb,CoF, behave as d = 2 king models [3]. In general, the best 
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way to probe the magnetic excitation spectrum is by inelastic neutron scattering. Apart 
from factors related to the Fourier transform of the atomic magnetization density and 
the spin polarization of the scattered neutron, neutron scattering provides a direct 
measure of the dynamical spin correlation function S""(q, CO), IY = x ,  y ,  z. 

The inelastic neutron scattering from an isotropic square Ising magnet was previously 
derived exactly by Allan and Betts [4], and the results graphed at a few select tem- 
peratures including the critical temperature. The present paper determines the exact 
solution for the transverse dynamical spin correlation function S*'(q, w )  of an aniso- 
tropic king ferromagnet on the d = 2 honeycomb lattice, at all temperatures and arbi- 
trary values of the anisotropy. In general, an Ising model is incomplete for describing 
such dynamical effects in actual physical systems since Sy(q, w )  of an Ising model 
exhibits neither dependence on wave-vector q,  nor line-widths Aw in energy, which can 
be understood rather intuitively as follows. The elementaryexcitations of an king model 
magnet, being 'individual spin flips', are most highly localized in the lattice configuration 
space, i.e. thereare nocollective-typemodes. Consequently, thecorresponding momen- 
tum transfer q-distribution is uniform. Also, since the local z-magnetization operator 
commutes with the Ising system total Hamiltonian, it is a constant of motion, and an 
king spin after being 'flipped' by a neutron thus takes an infinitely long time to recover 
its original orientation (relaxation time r = m). Because the excitations are infinitely 
long-lived, any associated line-width Aw = T -' isvanishingly small causing sharpness of 
energy (namely, Dirac 6-functions)~to emerge in the neutron scattering results. Of 
course, in a real magnetic crystal, additional transverse spin couplings and long-range 
forces such as dipole-dipole and spin-lattice interactions would induce q-dependencies 
and finite line-widths Am in the resonances. 

These significant limitations notwithstanding, since all the required localized cor- 
relations are exactly calculable in the present case of an anisotropic honeycomb Ising 
model ferromagnet, the locations and amplitudes of the &functions in energy are 
obtained exactly as functionsof temperature and anisotropy, reflecting the probabilities 
for the incident neutrons to encounter highly localized 'star' clusters of specific spin 
configurations. These exact solution curves of the scattering intensities for all tem- 
peratures and arbitrary valuesof the anisotropy are evidently (and perhaps surprisingly) 
the first toappearexplicitly in the literature, therebyenabiing inspection ofsuch features 
as rounded extrema, crossing points and weak (energy-type) singularities at criticality, 
where the locations and shapes of these features vary with anisotropy. Moreover, it is 
observed that each of the localized static correlations comprising the scattering inten- 
sities may be experimentally accessible. 

2. Anisotropic honeycomb king magnet 

The honeycomb lattice structure is a d  = 2 periodic array of regular hexagons (see figure 
1). The honeycomb pattern [ 5 ]  is one of the most frequently occurring d = 2 designs in 
nature (and art). with examples including the prototype beeswax honeycomb, the retinal 
pigment of one's eye, Indian corn (maize), skeletal remains of marine life, geological 
arrangements of suddenly cooled magma, crystallographic forms (basal plane of graph- 
ite, etc) and a plethora of other illustrations some of which, like the brick-wall lattice, 
are topologically equivalent to the honeycomb lattice. 
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Figure 1. The honeycomb lattice where four sites 
are specifically enumerated, namely, an origin 
site and its three nearest-neighbouring sites. The 
king interactions along the oblique (dashed) 
bonds have strength 1 whereas those along the 
horizontal (solid) bonds have strength 81. 

Figure 2. The (reduced) critical temperature 
K ; ’  (E k,T,‘I) versus the anisotropy parameter 
8. AsO- -, K;‘ 4 2/ln(l + “2) =2.269 18, . , 
(isotropic square king  ferromagnet). 

One now defines an anisotropic honeycomb king model ferromagnet on such a 
lattice of N sites as the classical king Hamiltonian 

where each site-localized Ising variable up = 21, z(,& . . . indicates summation over 
all distinct nearest-neighbour pairs of lattice sites along the oblique lattice axes with 
X ( l , k ) b  . , . beingsimilarlydefined along the horizontdlattice axis, andJ  > Oisastrength 
parameter of the ferromagnetic interaction with f3 > 0 being an anisotropy parameter. 

Since the partition function of the Ising model (2.1) is known exactly [6], various 
thermodynamic properties of the system can be found exactly in the standard manner 
from the first and second derivatives of the characteristic free energy. For present 
purposes, the dependence of the critical temperature upon anisotropy, T, = Tc(f3), can 
be determined implicitly from the relation [6] 

where K ,  = J/k,T, with kB being the Boltzmann constant and T, the critical absolute 
temperature (see figure 2). 

Specializations in the thermostatistical behaviour of the king model (2.1) include: 
(a) 0- 0: independent Isingchains; (b) f3 = 1: isotropic honeycomb Isingferromagnet; 
(c) e-+ m: isotropic square king ferromagnet; (d) 0- m, J-* 0, BJ = constant: inde- 
pendent Ising dimers. Some considerations involving a more general anisotropic case 
having different couplings along each of the three crystal axes will be given at the end of 
the paper. 
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The king a-variables are isomorphic to the corresponding r-component Pauli spin 
operators of, the latter operators being used for the quantal version of the classical 
model (2.1). As will be seen shortly, the quantal king model is actually required for 
treating the inelastic neutron scattering problem. 

3. Inelastic neutron scattering function 

Theoretical investigation of the inelastic neutron scattering double-differential cross- 
section entails evaluation of the function [l, 2,4]  

Yy”(q,  w )  = = d t z  exp[iq. (Rm - R.) - iwr](u*,&(l)) (3.1) 

whereR,,R,are the lattice position vectorsofsitesm andn, respectively. The summand 
of X,, is the temporal-lattice Fourier transform of the two-time, two-site transverse spin 
correlation (a;o;(r)) where q = k,, - kfin is the difference between the initial and final 
wavevectorsoftheneutron.and Aw = h’(k?, - &;,,)/2mo is theenergy transferredfrom 
the neutron to the spin system with mo being the neutron mass and 2nh being Planck’s 
constant. Here 

n 2 n L  m 

o;(f) = elXc/fi 0; (3.2) 
is the (time-shifted) operator in the Heisenberg representation using the quantal king 
Hamiltonian 

(3.3) 

As mentioned, the quantal form (3.3) is the classical form (2.1) wherein the king a,- 
variables have been replaced by their corresponding z-component Pauli spin operators 
of.  

Letting the set of all z-component Pauli spin operators {ab, U ; .  , . . , ob-,} = U, the 
magnetic canonical partition function 2, is defined as usual by the trace formula over 
all degrees of freedom of the system 

(3.4) 2% = Tr e-pE 
0 

whose inverse appears as the normalization factor in the expression for the canonical 
thermal average of any dynamical operator 5: 

( 5 ) = 2 , ‘ T r E e - P ”  0 (3.5) 

where. in the last expressions (3.4) and (3 .5) ,0  = l/k,Twith k ,  being the Boltzmann 
constant and Tthe absolute temperature. 

In order to evaluate the thermal average (o;o;(t)) in (3.1), one first introduces the 
following two useful identities: 

, g(I.f})G = o:g( l ( - I )*kof} )  ( 3 . 6 ~ )  

Tro:o:g(b?)) = 6, TrdIo;}) (3.6b) 

where a,,, is the usual Kronecker delta symbol and g({a;}) is any function of the z- 
component Pauli spin operators oof the total system. The proofs of both identities (3.6) 
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are quite straightforward, namely, (3.6a) is proven by using elementary propertiesof the 
Paulispin algebra and (3.66) byconvenientlychoosingadirect product representationin 
which all of-operators of the system are diagonal. 

Using (3.2), (3.3), (3.5) and (3.6), one writes 
o&(t)) = zijl T~ I - i W h  om e 

(I 

= 2;' Tr a;o& exp[(Zit/h)Jo',(o$, + oh2 + eo',,)] e-Ba 

= s.,(exp[(Zir/h)Ja:.(a:., + U',? + eo',,)]) 

= G,,(exp[iwoto~(u',, + oh2 + Soh,)]) 

0 

(3.7) 

where m , ,  mz and m3 are the oblique and horizontal nearest-neighbouring sites of site 
m, respectively, and a characteristic circular frequency has been defined by wo = U / h .  
Substituting (3.7) into (3.1) gives 

exp[iq. (R, - R,) - iwrld., 

x (exp[iootoh(o&, + oh2 + 8uh,)]) 

- - dte-io' (exp[iooro&(uf, + oh2 + eo:.,)]) 

dte-io'(exp[iooto~(uf + ai + eo;)]) 

22 I-. m 

27 I_. 

N- = k I: 

(3.8) 
N "  

- - - 

where the numeric site labels 0 ,1 ,2 ,3  in the final expression (3.8) are those previously 
specified in figure 1. Using (3.8), the inelasticneutronscatteringfunction, S"(q, U ) .  may 
now be written in the thermodynamic limit as 

S'(q, w )  = lim N-'YP"(q, o) = - dre-'W'(exp[ioo~oo(ol + uz + ea,)]) 

(3.9) 
where, for notational simplicity in (3.9), the z-component Pauli spin operators have 
been replaced by the isomorphic Ising variables, and the thermal average within the 
integrand can now be associated with the infinite lattice (thermodynamic limit). 

The exponential function appearing within the thermal average symbol in (3.9) is 
next expanded into a finite algebraic series by 

exp[ioot(ooo, + u 0 q  + Buou3)] = A  + B,(ooul + ooaz) 

+ BpJ@) + C,a,a, + Cz(u,o3 + Up.73) + Do,o,o,u, (3.10) 

where 

A = Q [ ( f 3  + f - ~ ) + ( f z + f - z ) + 2 ( f !  +f-1)1 (3. lla) 

B ,  = Q [ ( f 3  - f 3 )  + (f2 -f-z)1 

Bz = & [ U 3  -f-d-(fz -f-J +WI -f-1)1 

CI = H ( f 3  + f - 3 )  + (fz +f-z) - 2(fl +MI 

(3.116) 

(3.11~) 

(3.11d) 
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c2 = h I ( f 3  + f - 3 )  - ( f 2  + f - 2 ) 1  (3.11e) 

D=B[(f3-f-i)-(/ ;-f-z)-2(fi  -f-i)l (3.11f) 
where we have defined 

fz l  = e*i(2+R)wd flz = e * i ( 2 - R ) w ~ r  f- -1 - - e*iRwgi (3.12) 

To obtain the finite series expansion (3.10). use was made of the facts that each product 
of king variables is again an king variable, i.e. uou, = * 1, i = 1,2,3,  and thus satisfies 
( u O u , ) ~ + l  = uou,, ( U ~ U , ) ~  = 1, m = 0, 1, 2, . . . . The time-dependent coefficient 
expressions (3.11) were then determined by considering all possible realizations of the 
lsing u-variables in the identity (3.10). 

Substituting (3.10) into (3.9), one obtains 

dte-""'(A + 2 x i B ,  + x : B 2  +x ,C ,  +2xiC2 + x 3 D )  (3.13) 

where the equilibrium pair and quartet static correlations are defined by 

X I  = ( W J I )  x ;  = (0003) x2 = ( U * % )  

x; = ( U 1 4  
(3.14) 

x3 = (U"U1~2U3) 
and the symmetry of the lattice has been recognized in the appropriate painvise equating 
of geometrically equivalent pair correlations. As shown in the Appendix, all the above 
paircorrelationsx,, x i ,x2andx; can be evaluated usingcomplete ellipticintegrals, and 
the four-spincorrelation~~may then conveniently be evaluated in termsofx2 and x ;  by 
means of a linear algebraic correlation identity. One notes, for the isotropic (0 = 1) 
case, that the pair of nearest-neighbour correlationsx,, x i  become degenerate as also 
do the pair of next-nearest-neighbour correlationsx,, x i .  

Finally,substitutingthe coefficient expressions(3.11) and (3.12) into (3.13) and then 
utilizing the Fourier integral representation of the Dirac &function 

yields the result 

S"(q, W )  = z A , S ( w  - w.) n = 1 3 , + 2 ,  -cl (3.16) 
n 

where the scattering amplitudes (intensities per site) are given as 

Af3=6(11c -2x l+x ;  + x 2 + 2 x ; * x J )  (3.17a) 

A . , = & ( l + 2 x ,  3.r; + x 2 - 2 x ;  7 x 3 )  (3.17b) 

A,, = Q(2 2.x; - 2 x 2  3 2 x 3 )  (3.17~) 

and the scattering frequencies by 

u f3  = *(2 + e)w, w12 = q 2  - elmo w e ,  = +OWO. 

(3.18) 

The elementary excitations of the present king model are, as usual, 'individual spin 
flips'. Expression (3.16) reveals that the inelastic neutron scattering only occurs at 
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Figure 3. The (reduced) scattering frequencies o/q versus the anisotropy parameter 0, 
where mu I U/&. 

discrete energies where, for instance, hw3 = (2 + B)wois physically interpretable as the 
energy absorbed by the spin system upon ‘flipping’ a spin whose environmental spin 
configuration has the algebraic signatures (+) of the three nearest-neighbouring spins 
equal to the ‘flipped‘ spin’s original signature. As seen by (3.18), the discrete energy 
transfers 6w,,(8). n = ?3, 22. +1, are independent of temperature, vary linearly with 
anisotropy 0 and possess degeneracies. More specifically, one observes from (3.18) (see 
figure 3) that the pair of scattering frequencies w + ~ .  w t l  becomes essentially degenerate 
at 0 = 1 (isotropic case) as does the pair U-?, becomes 
accidentally degenerate at B = 2. 

Since all the correlations appearing in the expressions (3.17) are exactly calculable 
as functions of temperature T and anisotropy B (see the Appendix), the amplitudes 
(intensitiespersite) A,( T, B ) , n  = 2 3 ,  +2, -C 1. of the Dirac &-functionscan be evaluated 
exactly and are displayed in figure 4 for all temperatures and selected values of the 
anisotropy. At very low temperatures, only the ‘spin wave peak’ at w = 0, = (2 -t O)oo 
occurs, whereas the other peaks gain non-zero weight as the temperature is raised with 
the distribution of peaks becoming symmetric (A3 = A _ ,  = A ,  = A-? = Q, A ,  = A - ,  = 
$) at infinite temperature (K = 0). Since the honeycomb net is odd-coordinated (in fact, 
the only regular d = 2 lattice having an odd coordination number), there is no inelastic 
peak at w = 0 to combine with the elastic peak. Within the disordered regions 
( T >  T,(B)) of figure4, tbescatteringintensitiespersiteA,,A2eachexhibit arounded 
maximum whose location and shape vary with the value of the anisotropy parameter 0 
(notice, for example, upon comparing figures 4(d) and 4(e), that the ordering in height 
of these two maxima reverses as 0 becomes sufficiently small). Also, for fixed 8 ,  the 
solution curves of A,,, A,,,A,, provide evidence for finite-temperature crossingpoints 
whose locations vary with anisotropy. In figure 4, each of the six amplitudes A$3, At?, 
A t l ,  has, for fixed 8, a weak energy-iype singulan‘iy E In E at the critical temperature 
T,(B) (see Figure 2) where E = IT- Tc(B)l/Tc(B) is the fractional deviation of the 
temperature from itscriticalvalue. These E In E branchpoint singulantiesare manifested 
as verticalinf[ectionpoinfs. discernible on some of the curves in figure 4 with the chosen 

while the pair w + ~ ,  
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t W  

K 

Figure4 ( a )  Exact soluhoncurvesolthc >cartering amplitudes A. versus the (d.mensionlersJ 
inreracuonparametcr K ( = l l k B T )  lortheani,otrop) par3meterralueB = I.?.Thecrir~cal 
ialue K ,  = 0.62004. . . (b)Exact~olutioncuncsofthercatrer~ngamplitudcsA,~~'rsusthe 
(dimenuonless) interaciion parameter K ( = I .  kBTj for the anisotropy parameter valuc 
6 = I l#rorrop!r cnsei. Here. the amplitude norat~onr A .A.  , each embody a mammum 
rhreelold degeneracy in the d.rcrm energy transfers. The inset graph shun, the ueighrrol 
lhc~ca~tcr~ng3mpl.tudesatcr~t~c~l~ly(K= K , = I , k s T , =  dn(2 -  \'3)=0.658:7.. . ) . ( c )  
ES3CI solution cun'esof the scattenng amplttuocs A. (ersus the (dimenstonless) interaction 
parameter K ( : l , k b T )  lor the anisotropy pxamcier \ ' a I x  8 = 0.8 Thr critical \due 
K .  = 0.70973. . . . ( d )  Exact solution cunes ol  the xaltering ampliruder A. \errus tne 
(dimens~onless) interaclion pardmeter K (= 1, k B T )  for the anisorropy parameter V a l &  

e = O.S. The critical kaluc K,  = 0.831 U. . . . (e) Exact solurion cunes of the scsitering 
amplirudes A. versus the (dimensionless) interaction paramerer K ( = I  k,T) for the an+ 
sotrop) parameter wluc B = 0 1. Thc critical talue K' = 1.552 25 . . . . 

scales (also note the differing restricted ranges of the scales). Furthermore, figure 5(a) 
displays the exact solution curves af  crificalify for the scattering amplitudes A3, A I ,  A I 
versus the anisotropy parameter 8, where it is observed that the amplitude A3 possesses 
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T=T,(el 

0.75 

0,750 

0.21 0.725 n=s " 0  

e e 

Figures. (a )  Exact solutioncurves at criticality of the scattering amplitudes A,, A,, A ,  versus 
theanisotropyparameter B.ThecurvesiorA.,,A.,.A.,canbeobtainedfromfhoseshown 
by using detailed-balance relations. (b) Exact solution curve at criticality of the scattering 
amplitude A, versus the anisotropy parameter 8, focusing upon the minimal region. 

a shallow asymmetric minimum at the value B = 1 (isotropic case) with figure 5(b) 
focusing upon this minimal region. 

The scattering amplitudes (3.17) satisfy the sum rule Z, A ,  = 1 confirming that the 
total integrated inelastic neutron scattering intensity per site, dw Su(q,  w )  = 1, is 
independent of temperature and anisotropy which can likewise be proven by direct 
integration of the initial form (3.1), Also, it may be experimentally meaningful to 
remark that the linear algebraic relations (3.17) connecting the scattering amplitudes and 
localized Ising correlations are invertible, i.e. the indiuidual pair and quartet static 
correlations can be determined in principle from precise experimental knowledge of all 
the scattering intensities. 

Compared IO the existence of only four inelastic scattering modes in the isotropic 
(0  = 1) case, the present six modes illustrate the partial liftingofessential degeneracies. 
A more general anisotropic Ising Hamiltonian on the honeycomb lattice would contain 
two anisotropy parameters, say 8,B'  > 0, and would result in the complete lifting of the 
essential degeneracies, i.e. eight inelastic scattering modes appear. In this context, the 
facts that two of the four modes in the isotropic (8 = 8' = I )  case would each split into 
triplets can easily be established by an energy inspection upon an elementary 'star' 
clusterof Isingspins (acentral spin andits three nearest-neighbouringspins). Veritably, 
such an energy inspection upon all possible configurations of the four-spin 'star' cluster 
gives the following eight scattering frequencies: k(1 + B + B')w,, k(1 + B - 8')wo, 
k(1- 0 + B')w,, ?(l - B - 8')w~Forthismoregeneralcase,sincealllocalizedeven- 
number correlations appearing in the expressions for the inelastic scattering amplitudes 
possess weak (energy-type) singularities at the critical temperature T,(B, 0 ' )  [6] ,  each 
scattering amplitude therefore possesses this same natuie of singularity at criticality. 
Moreover, these scattering intensities can be expected as previously to exhibit rounded 
extrema and crossing points. 

4. Summary and conclusions 

Exact results in physics are valuable for a variety of reasons. Endeavouring to retain 
onlythemostessentialingredientsofaphysicalproblem. exactsolutionsofsimplemodel 
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systems often provide definite guidance and insights on more realistic and therefore 
invariably more mathematically complex treatments. Also, exact results from tractable 
models of seemingly different physical systems may alert researchers to significant 
common features of these systems and actually emphasize concepts of universality. In 
addition to their aesthetic appeal, exact resultscan, of course, serve as standards against 
which both approximation methods and approximate results may be appraised. 

In the present theoretical investigations, an exact solution has been calculated for 
the transverse dynamical spin correlation function P ( q ,  w )  of an anisotropic king 
model ferromagnet on the honeycomb lattice, having nearest-neighbour pairwise inter- 
actionsJ. 8J > 0 along the oblique and horizontal lattice axes, respectively, with 8 > 0 
being an anisotropy parameter. The form of this inelastic neutron scattering function 
was shown to be 

J H Burry and S E Nagler 

3 

s w .  W )  = 2 AJT,  e)s(w - w.(e)) 
-3 

“ # O  

which depends upon the frequency w ,  temperature T and anisotropy 8. The discrete 
cncrgy transfers htu,,(8) were independent of temperature, varied linearly with 8 and 
possessed essential degeneracicsat 0 = 1 (isotropic case) and an accidental degeneracy 
at 8 = 2. The amplitudes (intensities/site) A,(T. 8)  of the Dirac &functions exhibited, 
for fixed 0, such features as rounded maxima, crossing points, and weak (energy-type) 
singularities at the critical temperature Tc(8). At criticality, the exact solution curve of 
the ‘spin wave peak’ scattering amplitude versus anisotropy gave evidence for a shallow 
asymmetric minimum at 6, = 1 (isotropic case), To our knowledge, the exact-solution 
continuous curves for the king scattering amplitudes at all temperatures and arbitrary 
values of the anisotropy are the first to be explicitly displayed in the literature, and as 
such were needed to reveal and examine the above features whose locations and shapes 
varied with anisotropy. When compared against the existence of only four inelastic 
scattering modes in the isotropic (0 = 1) case, the present six modes illustrated the 
partial lifting of essential degeneracies. Some similar results were inferred for a more 
general case having two anisotropy parameters and eight modes. 

The honeycomb lattice was chosen both for its small coordination number 3 which 
simplified the analyses and results, and for the fact that the exact solutions of all required 
king correlations could be obtained in a relatively straightforward manner in the  pres- 
ence of anisotropy. One can most probably expect, however, many of the same quali- 
tative features appearing in the present results to arise similarly in the corresponding 
investigations upon the other three regular d = 2 lattices (square, kagom6 and triangu- 
lar). Further, for an alike king model in three dimensions (d = 3), the general form of 
the inelastic scattering function S”(q, w )  remains as previously, with each scattering 
amplitude again superposing a finite number of localized even-numher correlations 
having energy-type singularities at the critical temperature. Consequently. one may 
speculate that the present d = 2 exact results could also provide insights and some 
qualitative interpretations for similar studies upon d = 3 regular lattices. 

In  real magnetic crystals, interactions extraneous to a stdct king Hamiltonian, e.g. 
spin-lattice interactions, are essential to establish thermal equilibrium and to provide 
the noise for inciting thermal fluctuations. These additional perturbative interactions 
may influence the critical dynamics [7] of both the ordering (z-component) and non- 
ordering (x-, y-component) spin degrees of freedom, conceivably modifying critical 
features such as the weak singular behaviour E In E of tlie transverse dy~amical spin 
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correlation function S”(q. 0). Relevantly, in neutron scattering experiments, because 
of polarization factors in the cross-section, it is possible to separate or disentangle the 
dynamical spin correlation functions See(q, U ) .  a = x , ~ ,  z. Indeed, elucidating the 
diverse complexities in dynamiccritical phenomena is premised upon close collaborative 
contributions between theory and experiment. 
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Appendix 

As shown by Baxter and Enting [8], and Baxter [6], the honeycomb pair correlations 
x , ,  x i ,  x 2 ,  x i  needed in the present studies are related to the nearest-neighbour pair 
correlation of the anisotropic square king model. 

Morespecifically, letg,(K,, K,) be the horizontal nearest-neighbourpair correlation 
of a square lattice having (dimensionless) interaction coefficients Kh and K,, on the 
horizontal and vertical edges, respectively. Then 

with 1(11), E(1,) being, respectively, thecomplete ellipticintegralsof the first andsecond 
kinds, of modulus I , .  

Using the relations derived by Baxter and Enting, one finds, upon letting 

’cosh K(2 + 0) 
,cosh K(2  - 0). 

K‘ =;In( 

cosh K(2  + 0) cosh K(2 - 0) 
cosh’ K 0  

K“ = iln 

that 

X I  =g,,(K,K’) x i  =g, (K’ ,K)  X ;  =g,,(KO,K”) xI =g,,(K”,KB). (A31 

Since the square lattice expression ( A l a )  is exactly calculable, equations (A3) now 
enable the honeycombcorrelationsx,, x i  , x 2 ,  x i  to be exactlycalculated. 

By further employing a linear correlation identity whose coefficients depend only 
upon K and 0. the remaining quartet correlations x3 can be found in terms of the next- 
nearest-neighbour pair correlations x 2  and x i .  This may be seen as follows. Let [g] be 
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any function of the honeycomb king variables U, ,  u2, . . . , (excluding 00, the 
origin-site variable in figure 1). Using algebraic and partial-trace manipulations, one 
can derive the identity relation [9] 

(A4) 

n = 0 , 1 , 2 , .  . , , the transcendental function of Ising variables appearing within the 
right-hand-side thermal average in (A4) can be expanded into a finite algebraic series 
as 

J H Barry and S E Nagler 

(oO[sl) = ( [g j  tanhK(0, + oz + 003)) 0 0  4 kl. 
Making use of fact that any dichotomic Ising variable U, satisfies U?" = U , ,  U? = 1 ,  

tanh K(o, + U? + O q  ) = E l ( u ,  + u2) + E z ~ 3  + Fu,o,u, ('45) 
where the coefficients E,, E2.  Fare  determined by substituting all possible realizations 
of u l ,  U?, u3 into (A5), yielding 

E ,  = E(tanh K(2 + e) + tanh K(2  - 0)) 

E: = $(tanh K(2 + 8) - tanh K(2 - 0) + 2 tanh KO) 

F =  t(tanh K(2 + 6') - tanh K ( 2  - 0) - 2 tanh KO). 

(A64 

(A6b) 

(A64 

(A71 

which is a basic generating equation for developing linear algebraic identities among 
multisite correlations of the anisotropic honeycomb king model (2.1) or its quantal 
version (3.3). For present purposes. an immediate application of (A7) yields 

Substituting (A5) into (A4) gives 

(Oo[g]) = Ei(('Ji + 'J?)[gl) + E 2 ( 0 3 [ g ] )  + F(UI'J~U~[~]) 0 0  [SI 

xa = ( ~ 0 ~ 1 0 2 ~ 3 )  = E [ ( U ~ U ~  + ~ 1 ~ 3 )  + E,(u,u,)  + F =  F +  E2~2 + 2Eix$ 
('48) 

where we have used the definitions~(3.14). and the symmetry of the lattice has been 
recognized in the suitable painvise equating of geometrically equivalent pair coire- 
lations. Since the exact solutions forx, and x i  have already been determined, equations 
(AS) and (A6) now determine as desired the exact solution for the localized quartet 
correlation x3 .  

Since king variables and z-component Pauli spin operators are isomorphic, these 
exact solutions for classical king correlations may be identified with the corresponding 
longitudinal Pauli spin correlations of the quantal king model (3.3) as needed. 
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